
Збірник матеріалів містить загальну програму конференції, тексти пленарних доповідей провідних біологів Харківського національного університету імені В.Н. Каразіна та тези доповідей студентів, аспірантів та молодих ученів України та зарубіжжя за результатами їх наукових досліджень. Збірник розрахований на наукових працівників, студентів, аспірантів, які працюють у галузях біології та біомедицини.

За достовірність викладених фактів та текст відповідальність несуть самі автори.

Редакційна колегія: Красільникова Л.О., Акулов О.Ю., Безроднова О.В., Жмурко В.В., Некрасова А.В., Нікітченко І.В., Страшнюк В.Ю., Утєвський А.Ю.

Організаційний комітет конференції: Задобовський І.І. (голова), Воробієва Л.І. (заступник голови), Жмурко В.В., Саміло С.М., Тімченко Д.С., Бєєва О.Ю., Волкова Н.Є., Деренько О.С., Філіпенко Н.С., Кіюса Є., Леонтьєв Д.В., Моргуль І.Н., Навроцька В.В., Солов О.В., Утєвський С.Ю., Вінокуров С.В., Гасанов А.М., Григор'єв Д.С., Глянько О.В., Гніліцький М.В., Костенко В.В., Пономарьова А.В., Жигаліна О.В.

© Харківський національний університет імені В.Н. Каразіна, 2006

АЛЬГОФЛАРА ВОДОЕМІВ НОВОБОРОВСЬКОГО ЛУНГА (ЧЕРНІГІВСЬКА ОБЛАСТЬ)

Швед М.Д.

Херсонський національний університет імені В.Н.Карпаза, Україна
e-mail: shved@univer.kharkov.ua

Одній із важливих проблем учення екологічного розвитку є пиття про збереження водойм. Створення національних екосистем вихідних водильних природних університетів, виконувачів та активістів, які виконують функцію охорони природи, і, таким чином, представлять для вивчення цікава місця. Отримана гідрологічна база, також дозволяє проаналізувати можливості захисту водойм від екологічного руйнівного впливу. Водойми, які використовуються в експериментах, є важливою базою для вивчення законів розвитку рослинності і живих у водоймах. Альгологічна картина водойм використовується для вивчення впливу екологічних факторів на розвиток рослинності і живих у водоймах.
The present-day flora of Antarctic tundra includes 3 species of vascular plants: *Deshampsia antarctica* Desv. (Poaceae), *D. a., Colobanthus quitensis* (Kunth) (Caryophyllaceae) - C.q. and *Poa annua* L., the only species adapted to Antarctic habitats and man-born ones. There are about 61 moss species in King George Island, 250 lychnophytes and algae.

Climate warming caused glacier melting and new snow-free territories appeared, processes had place earlier. Today we can watch progressive colonization and tundra vegetation formation and speculate about plants’ spreading during past deglaciations.

The main goal of our research was to reveal interactions between species of Antarctica in the context of their habitats’ conditions. In King George Island we established permanent plots, where we made geobotanical inventories, studied ecological conditions, density, population structure and some parameters of generative specimens. While designing a plot, the presence of at least one vascular plant was the main criterion. Both species have various morphological features and are able to adapt to a wide spectrum of conditions, unlike mosses, lichens and algae.

The plant cover of Antarctic tundra is influenced mainly by abiotic factors, such as relative humidity. At the plot nearest to the glacier, there was equal abundance of *D.a. and C.q.*, and lowest developed moss cover (50%). Further away, where the ground was covered by snow running from glacier, total plant cover was about 100% (*D.a. prevails), there were also lichens (*Usnea sp.* prevails), mosses were also abundant (40-70%); lichophyte lichens were found in *Deshampsia* associations. At the peripheral plots (the most remote from the glacier), relative humidity decreased and total plant cover was consequently less dense (50-80%). *D.a. and C.q.* mosses were lower while lichens became more abundant; where there were no vascular plants, macrophyte alga *Prasiola crispa* (Light.) Menegh. appeared. In addition, the presence of guano was an important factor of nitrogen regime of the ground. *D.a. and C.q.* appreciated guano, grow rapidly, sometimes forming layers upon mosses, whereas bushy lichens are nitrophobic and do not occur in these coenoses. It also may cause presence or absence of certain mosses, lichens and algae. All the plants forming coenoses strive for 100% individual cover, at the same time, is also mutual restricting, just vascular plants are the most succeed in overcoming partly due to the ability to grow on the moss cushions.

To summarize all previously mentioned, we postulate that:
- All the species forming the plant cover of Antarctic tundra, are the primary colonists, there is no sign of succession in their interactions
- To reconstruct the succession of colonization and interactions between species groups of plants it is necessary to continue monitoring the permanent plots, so as to observe the processes’ dynamics.